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Abstract-Weld-induced residual stresses in shell structures tend to give earlier onset of plastic
yielding and to reduce the critical buckling load. Geometrical imperfections may also have a
detrimental effect on the load carrying capacity. The interaction between these two kinds of
imperfections is studied here for various longitudinally welded cylindrical shell structures. with
focus on short wave local buckling modes. It is found that structures with reduced bifurcation loads
due to residual stresses show less sensitivity to geometrical imperfections, and after buckling mode
deflections of the order of the shell thickness, the residual stresses play no role at all.

I. INTRODUCTION

For shell structures subject to compressive loading in the elastic range a very unstable post­
buckling behaviour with an associated strong imperfection-sensitivity is often found, both
in theoretical and experimental investigations (Koiter, 1945; Budiansky, 1974; Babcock,
1974). This behaviour is entirely dependent on geometric nonlinearities, whereas, in the
plastic range, the picture is further complicated by the interaction with material non­
linearities.

Bifurcation in the plastic range takes place under increasing load (Shanley, 1947; Hill,
1958; Hill, 1961), but apart from this initial behaviour plasticity tends to have a destabilizing
effect (Hutchinson, 1974; Needleman and Tvergaard, 1982). Thus, structural components
with a stable elastic post-buckling behaviour, such as columns or plates, tend to show
imperfection sensitivity in the plastic range. However, for a complete spherical shell under
external pressure or a circular cylindrical shell under axial compression, which are highly
imperfection-sensitive structures in the elastic range, the reduction of the load carrying
capacity is relatively smaller in the plastic range, for a given ratio of the imperfection
amplitude and the shell thickness (Hutchinson, 1972; Tvergaard, 1983).

Residual stresses can significantly lower the elastic buckling load, or even result in
buckling without external loading. This is quite analogous to the effect of thermal expansion,
which can lead to thermal buckling of nonuniformly heated shells (see the discussion by
Bushnell, 1985). For more thick-walled shell structures, where buckling occurs in the plastic
range, the influence of residual stresses is mostly related to the earlier onset of plastic
yielding with the corresponding loss of stiffness in some parts of the material.

Welding is an important source of residual stresses. Much work has been devoted to
studying the effect of weld-induced residual stresses on the buckling of plate structures
(Dwight and Moxham, 1969; Graves Smith, 1971; Little, 1977). Also, for an axisymmetric
shell under external pressure with internal ring-stiffeners welded to it, the effect of the welds
on the buckling pressure has been analyzed (Bushnell, 1985). Cold bending of metal sheets
is another process that gives rise to significant residual stresses, which oscillate through the
thickness after springback, varying between tension and compression.

The present paper considers the effect of weld-induced residual stresses in shell struc­
tures, with the main emphasis on non-axisymmetric cases. First, the basic shell equations
and constitutive relations required for the analysis of plastic buckling are presented, and
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the representation of well-induced residual stresses is discussed. Then. a computational
procedure is given. and the effect of welds is illustrated by results obtained for various
cylindrical shell structures (Ravn-Jensen, 1984).

2. SHELL EQUATIONS

A point on the shell middle surface is identified by the coordinates x'. The displacement
components are u' on the corresponding surface base vectors and 11' on the surface normal.
Greek indices range from 1-2, while Latin indices (to be employed subsequently), range
from 1 to 3, and the summation convention is adopted for repeated indices.

The nonlinear membrane strain tensor is

and the linear bending strain tensor for the middle surface is used in the form (Niordson,
1985)

(2)

Here, a.{J and d.{J are the metric tensor and the curvature tensor, respectively, of the
undeformed middle surface, and ( ).• denotes covariant differentiation. It is noted that (I)
and (2) are identical to the strain measures proposed by Koiter (1966), except for small
differences in the bending strain measure of the order of d~E:)'p.

In cases where two shell segments are bonded to one another along a line, continuity
of rotations around this line is required. If n' is a unit in-plane normal to the line, the angle
of rotation IjJ around the line is given by

(3)

The three-dimensional constitutive relations are taken to be of the form

(4)

where (Til is the stress tensor, 'lkl is the strain tensor, Djkl are the instantaneous moduli, and
(') denotes an incremental quantity. Since the stress state in the shell is approximately
plane, only the in-plane stresses enter in (4), and the constitutive relations can be written
as

(5)

The in-plane components of the Lagrangian strain tensor at a distance x 3 from the shell
middle surface (Xi is a right-handed coordinate system) are approximated by

(6)

The membrane stress tensor N·{J and the moment tensor M·{J in a shell with thickness
h are taken to be

(7)

Then, from eqns (5), (6) and (7), incremental relations are obtained for N·{J and M'P in
terms of e)'J and K)'J' The requirement of equilibrium is specified in terms of the principle of
virtual work
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(8)

where A is the middle surface area, and 0We is the external virtual work. Expansion of
(8) about the current approximate equilibrium state gives to lowest order the following
incremental equilibrium equation

1{N'P&.P +M·PO".p +N·P[aYI'(ul,•• - dy. w)(Oul'.P - dl'pOw)

+ (w,. +~uY)(ow,p +dpoul')]} dA = 0We - [l {N'P&.P +M'PO"'p} dA - 0 WeJ. (9)

The terms bracketed on the right-hand side of (9) are included to prevent drifting of a
numerical solution away from the true equilibrium path.

The theory of plasticity employed here is small-strain Jrflow theory with isotropic
hardening. In the three-dimensional xi-coordinate system with metric tensor giJ the instan­
taneous moduli are

(10)

where E and v are Young's modulus and Poisson's ratio, respectively, Ue = (3Sijs iJ/2) 1/2, in
terms of i J = uij-iJdk/3, and

{

3 E/E,-l
!(ue ) = 2E/E,- (1- 2v)/3'

0, for Ue < (u.)max or ct. < o.
(11)

The initial value of (u.)max is the yield stress uy , and the tangent modulus E, is the slope of
the uniaxial stress-strain curve, which is here

for U ~ uy
(12)

for U > uy

with strain hardening exponent n.

3, WELD-INDUCED RESIDUAL STRESSES

When two shell segments are welded together, the material along the weld is heated to
the melting temperature, and stress relaxation at the high temperature is so rapid that the
heated structure is essentially stress free. However, when the structure is subsequently
cooled to room temperature, large tensile stresses develop along the weld as a result of
thermal contraction, while compressive stresses develop farther away from the weld to keep
equilibrium.

In Fig. la the dashed curve indicates a possible idealization of the residual stresses
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Fig. 1. (a) Residual stress distribution in direction parallel to weld. (b) Hatched region shows

tension zone used to model weld-induced residual stresses.

after welding. It is assumed that the tensile stresses are constant and equal to the initial
yield stress a.. in a strip of material near the weld, while the constant compressive stresses
ar are somewhat smaller than ay' This model of the weld-induced residual stresses has been
discussed and recommended by Dwight and Moxham (1969), who have also used the model
in analyses of welded plate structures. On the basis of empirical investigations, Faulkner
(1977) has suggested using a tension zone such as that illustrated by the hatched region in
Fig. 1b, where the value of tT is between 3 and 6, common for all plate segments meeting at
the weld. In examples in the following sections the value arlay will be specified; but it is
noted that indirectly this gives the value of tT, since the tensile residual stresses are taken to
be a v ,

For perfectly flat plates welded together the assumed residual stress field can satisfy
equilibrium accurately, and the same is true for uniformly spaced welds in the longitudinal
direction of a cylindrical shell. However, in the case of circumferential welds in cylindrical
shells, or in cases where the plate or shell segments to be welded have initial geometrical
imperfections, the assumed uniform residual stress fields do not satisfy equilibrium directly.
In such cases the actual initial geometry and stress fields are calculated numerically by a
few initial increments, which may incorporate a small amount of plastic yielding, since the
material in the tensile zones starts out on the yield surface. This incremental determination
of the initial equilibrium state is important here, since a number of the calculations to be
discussed focus on the interaction of geometrical imperfections and weld-induced residual
stresses, It is noted that during these initial increments the general features of the residual
stress distribution remain as shown in Fig. la.

4. SOLUTION METHOD

The computational results to be considered here refer to cylindrical shell structures,
welded along lines parallel with the cylinder axis. Initial imperfections are taken to be
periodic in the axial direction with a certain wavelength L, and the solutions are restricted
to buckling patterns that remain periodic with the same wavelength L. The middle surface
coordinates are taken to have x' in the axial direction and x 2 in the circumferential
direction. Then, for arbitrary cross-sectional shapes of the cylindrical shells the displacement
components can be expressed by a series expansion in axial direction

2nnx'
U~(X2) cos -L-

2nnx 'U,;(x 2
) sin -L-

2nnx '
Wn {x 2

) sin -L-

(13)
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as has been suggested by Tvergaard (1978) for oval cylindrical shells. In the incremental
finite element solution based on (9) the one-dimensional amplitude functions U~, U; and
Wn are approximated by Hermitian cubics within each element.

In the expansion (13) it has been found that using N = 2 gives good accuracy. The
integrals in (9) are evaluated by four-point Gaussian quadrature in circumferential direction
within each element, while eight-point Gausssian integration is used in the axial direction,
within the interval [- L/4, L/4]. Through the thickness Simpson's rule is used. with seven
points in (7). The active branch of the tensor of instantaneous moduli (10) is determined
in each integration point, according to whether elastic unloading or plastic loading took
place in the previous increment [see eqn (1 I)].

Buckling ofa geometrically perfect shell initiates at a bifurcation point. The bifurcation
load and the corresponding bifurcation mode are determined by application of Hill (1958)
and Hill (1961) general theory for uniqueness and bifurcation in elastic-plastic solids. The
details of this analysis shall not be discussed here [e.g. see Hutchinson (1974) or Needleman
and Tvergaard (1982)]; but it is noted that the bifurcation mode is of the form (13), with
a certain critical wavelength Lc and corresponding amplitude functions 01. OT. WI' Such
bifurcation analyses have been carried out for each of the shell structures to be discussed
in the following, both in the initially stress-free cases and in the cases with weld-induced
residual stresses. When initial geometrical imperfections with amplitude ¢ are specified,
these imperfections are taken to be in the shape of the first critical bifurcation mode for the
corresponding perfect structure (although sometimes a wavelength L different from Lc is
applied), with ¢ denoting the maximum normal deflection WI normalized by the shell
thickness.

It is well known that bifurcation calculations based on the deformation theory of
plasticity generally agree better with experimental buckling loads for plate and shell struc­
tures than similar calculations based on J 2 flow theory. Bifurcation predictions of defor­
mation theory can be justified by appealing to a more sophisticated flow theory, where a
vertex forms on the yield surface (Hutchinson, 1974; Needleman and Tvergaard, 1982).
The application of such a corner theory of plasticity can also be significant for initially
imperfect shells, particularly in cases where second bifurcations occur (Tvergaard, 1983).
However, the discrepancies between bifurcation predictions based on different constitutive
laws are small as long as the initial yield stress is only slightly exceeded, and therefore it is
assumed in the present paper that the material behaviour is reasonably well described by
J 2 flow theory.

5. RESULTS FOR CYLINDRICAL SHELL STRUCTURES

For a longitudinally stiffened circular cylindrical shell under axial compression local
buckling of the shell between the stiffeners is the first critical bifurcation mode, provided
that the stiffeners are sufficiently strong. Such buckling in a short wave pattern between the
stiffeners has been analysed by Koiter (1956) for elastic shells and by Tvergaard (1977) for
elastic-plastic shells. Here, the additional effect of the residual stresses induced by welding
the stiffeners onto the shell will be studied.

The stiffener spacing, measured along the shell middle surface, is denoted by b, and
the shell material is taken to have q.vlE = 0.002, v = 0.3 and a strain-hardening exponent
n to be specified for each case. As in previous analyses for axially compressed cylindrical
panels (Koiter, 1956; Tvergaard, 1977), the stiffeners are assumed sufficiently strong to
prevent waviness of radial deflections along their lines of attachment, while all other effects
of the stiffeners are neglected. Thus, the actual stiffener geometry and the stress distribution
inside the stiffeners are not accounted for in the results to be presented here. It is noted that
computations have been carried out for plates reinforced by T-stiffeners with the cross­
sectional height 0.2b and the width O.lb of the top flange (Ravn-Jensen, 1984), and the
plate results for idealized stiffeners to be presented here differ only little from those based
on detailed modelling of T-stiffeners by plate elements.

First, a longitudinally stiffened flat plate is considered, for which Fig. 2 illustrates the
local buckling mode investigated. Due to various symmetries only one quarter of the region
shown in Fig. 2 needs to be analyzed numerically. The discretization in the longitudinal
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Fig. 2. Local buckling mode analyzed for longitudinally stiffened plates under axial compression.

direction is based on using N = 2 in (13). In the transverse direction the half-width between
two stiffeners is divided into three elements, one inside the residual tensile stress zone and
the others outside.

Load deflection curves are shown in Fig. 3 for a panel with blh = 40. made of a low
hardening material, n = 100. Here the wavelength L = 1.65b is used, which gives slightly
lower maximum load carrying capacity for geometrically imperfect panels than the some­
what larger wavelength of the first critical bifurcation mode. The load parameter Adenotes
the ratio of the average compressive stress in the panel and the initial yield stress aI" while
~ denotes the maximum absolute value of the function W)(x 2

) in (13). Curves are shown
for three different levels of the residual compressive stress, (Jr = 0, ar = 0.2al ., ar = O.4al"
and for each case three different values of the initial geometrical imperfection amplitude
are considered, , = 0, ~ = 0.01 and ~ = O. I. The bifurcation load has been determined for
the three cases of zero imperfection, and it is seen that bifurcation occurs shortly after the
first onset of plastic yielding (indicated by a circle on the curves). In each case the post­
bifurcation behaviour is computed as the behaviour of a structure with a very small initial
geometrical imperfection (, = 0.0002).

It is seen in Fig. 3 that the residual stress gives a significant reduction of the bifurcation
load. However, the lower bifurcation point has a stable post-bifurcation behaviour, so that
part of the reduction in load carrying capacity indicated by the lower bifurcation point is
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Fig. 3. Load vs local buckling mode deflection for longitudinally stiffened plate with b/h = 40 and
n = 100.
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Fig. 4. Load vs local buckling mode deflection for longitudinally stiffened plate with blh = 40 and
n= 10.

regained through less sensitivity to geometrical imperfections. The most significant feature
of the curves in Fig. 3 is that they all meet at !!:' ~ l.lh. Thus, at deflections larger than
about a shell thickness, there is no longer any visible effect of the weld-induced residual
stresses on the load carrying capacity. In conclusion, both residual stresses and geometrical
imperfections can lead to a reduction in the load carrying capacity; but the effect of these
two different kinds of imperfections is not additive.

Figure 4 shows similar results for an eccentrically stiffened plate made of a more high­
hardening material with n = 10. Here, the wavelength L is chosen as that corresponding to
the minimum bifurcation load. The behaviour is rather similar to that shown in Fig. 3, but
clearly the reductions of the load carrying capacity due to either residual stresses or
geometrical imperfections are larger for the low-hardening material in Fig. 3.

It should be emphasized that the local buckling in a short wave pattern between the
stiffeners is only one of the possible buckling modes. Other buckling modes involve sig­
nificant bending of the stiffeners, and nonlinear interaction between different buckling
modes can be a significant effect. Thus, for eccentrically stiffened elastic-plastic plates as
those shown in Fig. 2, with uniformly spaced transverse supports, Tvergaard and Needle­
man (1975) have considered the interaction between local buckling mode and a wide
column type buckling mode.

Results for a circular cylindrical shell with longitudinal stiffeners are shown in Fig. 5.
As in the previous figures the shell is under axial compression, and only local buckling
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Fig. 5. Load vs local buckling mode deflection for longitudinally stiffened circular cylindrical shell
with Ok = 1/2. hill = 40 and 11 = 10. Plate results (Ok = 0) shown for comparison.
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Fig. 6. Load_ys local buckling mode deflection for longitudinally stiffened circular cylindrical shell
with 0, = "\ 2 2. hlz 50 and II = 100. Results for plate (0, 0) and less curved shell (II, = I 2)

shown for comparison.

between the stiffeners is considered (analogous to the mode illustrated in Fig. 2). Also here
the spacing to thickness ratio is blh = 40, and the shell curvature Ok = 1/2 is specified in
terms of the curvature measure

(14)

introduced by Koiter (1956). Here, R is the radius of the circular cylindrical shell, and the
value Ok = 1/2 in Fig. 5 corresponds to RIb = 13.4. For elastic shells with idealized stiffeners
it was found by Koiter (1956) that the local buckling mode is unique in the range 0 ~ Ok ~ 1,
whereas for elastic-plastic shells this uniqueness is lost at values of Ok somewhat smaller
than unity (Tvergaard, 1977).

The load deflection curves in Fig. 5 are obtained for the high-hardening material,
n = 10. Two curves for a flat plate with no geometrical imperfection (Ok = 0, ~ = 0) are
included for comparison (taken from Fig. 4). It is seen that the main effect of the curvature
(Ok = 1/2) is to increase the bifurcation loads and the load carrying capacity for small
geometrical imperfections, while at !!' ~ I.2h, where all the curves meet, there is hardly any
difference from the stiffened plate results.

Figure 6 shows results for a stiffened shell with blh = 50, made of the low-hardening
material, n = 100. Here, results are shown for a higher curvature Ok = fill, using the
wavelength L = 1.65b, and post-bifurcation curves for Ok = 1/2 and Ok = 0 are included for
comparison. In this case, all bifurcation points occur in the elastic range; but soon after
bifurcation plastic yielding sets in, and subsequently the behaviour is much like that found
in the previous three figures. It is noted that Fig. 6 represents a case where elastic bifurcation
loads are significantly red,!!ced by the residual stresses (Jrl(Jr = 0.4. Furthermore, the slightly
higher curvature Ok = vf2/2 gives quite a big increase of the bifurcation loads, with a
corresponding increased imperfection-sensitivity.

Load vs axial compression curves are shown in Fig. 7 corresponding to each of the
post-bifurcation curves (~ = 0) given in Fig. 6. Here, b denotes the average axial compressive
strain. so that (E/(J,.)lj I would signify the onset of plastic yielding in a uniaxial com­
pressive test. The curves for the most curved panel (fJ. = vf2/2) show the characteristic
unstable initial post-bifurcation behaviour. whereas the plate solutions (Ok = 0) are initially
stable.

It has been found that the simplified Donnell-Mushtari-Vlasov shell equations are in
fact adequate for the analysis of the cylindrical panels discussed above, since here the
wavelength of the deformation pattern is small compared to the radius of curvature.
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Fig. .7. Load vs aXIal compression curves for plate (8k = 0) and shells (8k = 1/2 and (lk = ,,/2/2).
with b/Il = 50. n = 100 and -; = O.

However, the more accurate first-order shell theory specified by (1)-(3) and (9) is needed
for the next cases to be discussed.

Cylindrical shells built up of plates and circular cylindrical shell segments have been
analyzed by Almroth and Brogan (1972), who studied elastic buckling behaviour. For a
cylindrical shell structure of this type, subject to axial compression, the local buckling
behaviour in the plastic range is investigated here. A circular cylindrical shell with radius
R is cut along a diameter plane; then the two halves are separated by the distance 2R and
welded together with two plate strips of width b = 2R, to form an oval cylindrical shell
with the shape illustrated in Fig. 8a. The tensile residual stresses occur in narrow regions
along the four welds, with corresponding compressive stresses ar in the remaining part of
the shell.

The first critical bifurcation mode (Fig. 8b) involves mainly buckling of the flat plates,
and the critical stress is close to that of simply supported plate strips with width b = 2R.
However, the buckled plate segments lose their stiffness, which leads to a rapid stress
redistribution. Consequently, plasticity and buckling deflections quickly spread into the
curved parts of the shell, analogous to the behaviour found previously for elastic-plastic
cylindrical shells with elliptic cross-section (Tvergaard, 1978). Only the mode which is
symmetric about both planes of symmetry of the cross-section (Fig. 8b) is considered here,
so that only a region corresponding to one-quarter of the shell circumference and one-half
the wavelength in axial direction needs to be analyzed numerically. The half of the plate­
segment is divided into three elements (in circumferential direction), with one of these
modelling half the weld region, and the 90° circular cylindrical shell segment is divided into
four elements, with one modelling half the weld region.

Figure 9 shows load deflection curves for shells with the constant thickness h = b140.
The results in Fig. 9a are obtained for the more high-hardening material, n = 10, using
L = 1.8b, while Fig. 9b is obtained for n = 100, using L = 1.65b. It is seen that the more
high-hardening shell shows essentially no imperfection-sensitivity, whereas the low-hard­
ening shell is imperfection-sensitive, due to a stronger effect of the rapid stress redistribution
after the onset of plate buckling. As in the above results for stiffened circular cylindrical
shells it is noted that the weld-induced residual stresses, aria, = 0.2, significantly reduce the
bifurcation load. Also for the oval shells of Fig. 9 it is found that all the curves meet at a
certain buckling mode deflection, so that any effect of the residual stresses disappears for
deflections larger than .!!:' ~ 1.3h.

6. CONCLUDING REMARKS

The effect of residual stresses on the buckling behaviour of shell structures has -been
discussed here with main emphasis on weld-induced residual stresses. The general non­
linear field equations for the analysis of any elastic-plastic shell buckling problem have
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Fig. 8. Oval cylindrical shell built-up from two half circular cylindrical shells and two plates. (a)
Shape of the shell. (b) Symmetric short-wave buckling mode analyzed.

been specified, including a procedure for the approximate representation of initial residual
stresses; but the examples used to illustrate the buckling behaviour are limited to short
wave modes in cylindrical shell structures.

Some characteristic features of the solutions are common for the local buckling between
longitudinal stiffeners and the buckling of built-up oval cylindrical shells considered here.
Thus, residual stresses reduce the bifurcation loads for geometrically perfect structures; but
simultaneously the sensitivity to geometrical imperfections is also reduced. Furthermore,
the effect of residual stresses on the load carrying capacity disappears when the buckling
mode deflection has reached a certain value of the order of the shell thickness. The general
picture is that weld-induced residual stresses reduce the maximum load carrying capacity if
the structure is imperfection-sensitive in the absence of residual stresses; but the detrimental
effects of residual stresses and geometrical imperfections are not additive.

A complete understanding of the influence of residual stresses on shell buckling behav­
iour will require much more work. Long wave buckling modes such as column type modes
for the whole structure or modes involving significant stiffener bending could show a
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Fig. 9. Load vs short-wave buckling mode deflection for oval cylindrical shells with b/h = 40 and
blR = 2. (a) n = 10, (b) n = 100.

different type of response, and also the non-linear interaction between different types of
modes would have to be considered.
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